PROLONGED QTC INTERVAL AND TORSADES DE POINTES INDUCED BY MOXIFLOXACIN

Mohammad Iftikhar Adil¹, Mir AttaUllah², Meena Gul³, Sartaj Khan⁴

¹Department of Pharmacology, Gajju Khan Medical College, Swabi, Pakistan
²Department of Pathology, Gajju Khan Medical College, Swabi, Pakistan
³Department of Physiology, Gajju Khan Medical College, Swabi, Pakistan
⁴Department of Community Medicine, Gajju Khan Medical College, Swabi, Pakistan

ABSTRACT

(TdP) is a particular kind of polymorphic ventricular tachycardia that may be fatal if it persists and occurs in conjunction with [QT interval] prolongation. A broad variety of medications that are often used in clinical practice may lengthen the [QT interval], which can cause TdP and put the patient's life in jeopardy. [Moxifloxacin] is one of these medications that is known for prolonging the [QT interval] and causing TdP, along with other fluoroquinolones. As a result, we are presenting the case of a 60-year-old female who was treated with [Moxifloxacin] for acute gastroenteritis and a chest infection and later developed [QTc] prolongation and TdP.

Keywords: [Corrected][QT interval], [QTc] [Moxifloxacin], [Torsades de pointes] (TdP)

INTRODUCTION

The potentially lethal form of polymorphic ventricular tachycardia known as torsades de pointes (TdP) requires urgent medical attention. TdP may originate from an elongated [QT interval], either genetic or environmental. Medications that delay ventricular repolarization are a common source of acquired cases. The [QT interval] on an electrocardiogram refers to the space between the beginning of the Q wave and the end of the T wave. Time to repolarization after ventricular depolarization is shown. The [QT interval] complex and ST interval are divisible. The ST segment and T wave comprise the ST interval. QT prolongation may come from prolonged depolarization or repolarization. The ECG shows a larger QRS complex due to increased depolarization. A longer ECG ST interval suggests a longer repolarization time. A lengthy ST interval might occur from a long ST segment or T wave. Lead AVR, AVF, V5, V6, and V4 may measure [QT interval] instead of Lead II. If this is impossible, the lead with the best [QT interval] measurement accuracy shall be chosen. QT changes with heart rate and has an inverse relationship to it, hence corrected QT should be used instead. QT lengthens with heart rate falls and shortens with heart rate rises. The [QT interval] at 60 bpm is estimated to correct QT. ECGs with 60 beats per minute heart rates indicate an individual's absolute [QT interval] value.

Bazett's formula is the most popular correction formula for [QTc] estimates: QTc = “QT / (RR)”

Electrolyte imbalance, especially hypocalcemia, hypokalemia, and hypomagnesemia; diabetes; abnormal drug elimination compared to oral administration; old age; gender; cardiovascular conditions like ischemia, infarction, congestive heart failure, cardiomyopathy, atrial fibrillation, bradycardia; obesity; acute intracranial hypertension; QT interval prolongation is predisposed by the number 7 and genetic polymorphism. Rapid intravenous infusion of proarrhythmogenic and torsadogenic medicines prolongs QT or TdP.

QT intervals are often lengthened by medication. QT prolongation has been related to several medicines. Drug-induced QT lengthening is often caused by blocking the Ikr, a fast-moving component of the delayed rectifier current that restores the action potential to the resting membrane potential. Thioridazine, cisapride, terfenadine, astemizole, and sertindole suppress Ikr. All these variables impede
Human ERG encodes the alpha subunit of the ion channel regulating protein (IKr). QT prolongation may result from hERG channel trafficking changes. Arsenic trioxide, pentamidine, and scorpion toxin inhibit housekeeping proteins from binding to the hERG channel. Failure to transport mature channels to the cell membrane slows repolarization and prolongs QT.

These sodium channel blockers delay depolarization and inhibit the INa+ current, causing a big QRS complex on the EKG. Danisetron, a 5HT3 antagonist, is highly tarsadogenic, as are tricyclic antidepressants, antiemetics, local anesthetics, class 1A and 1C antiarrhythmics like quinidine and procainamide, and other drugs in these classes. Because they expand the QRS complex, these medications extend the QT interval. Some Na+ channel blockers also reduce Ikr currents, extending QT and widening QRS complexes. Cocaine and similar drugs block potassium-sodium channels. Cocaine addicts risk QT prolongation and TdP.

Mefloquine, bepridil, and azimilide inhibit the potassium rectifier current’s fast and slow components to delay cardiac repolarization and extending QT. By inhibiting IKs, halothane, isoflurane, enfurane, and sevoflurane may increase [QT interval]. 2 adrenoceptor agonists including epinephrine, salbutamol, terbutaline, and salmeterol reduce blood potassium and block IKr, extending the QT interval.

The heart takes longer to repolarize when diuretics like furosemide and thiazide lower potassium and magnesium levels in the blood. There’s no immediate magnesium impact. Hypokalemia and hypocalcemia extend [QT interval]. ECG hypokalemia occurs when blood potassium drops below 2.7meq/L. Insulin prolongs QT via boosting sympathetic activity and lowering blood potassium with hypoglycemia. The [QT interval] is lengthened by fluoroquinolones and macrolides. Drugs with QT prolongation have been withdrawn from US sales. When the IKr is inhibited, the ECG shows a U wave, which activates an early after depolarization current during phases 2 and 3. When these levels rise too high, ventricular arrhythmia may cause re-entry and torsade de pointes. Due to a lack of delayed rectifier potassium current, ventricular M cells in the deep endocardial and middle myocardial layers are more susceptible.

Avoiding ventricular fibrillation and abrupt cardiac mortality requires TdP therapy. TdP therapy begins with magnesium sulphate after defibrillation.

Since 1985, quinolones have been widely used. They work against many bacteria, even those resistant to most antibiotics. Because they might cause cardiac difficulties in certain people, Gatifloxacin, Trovofloxacine, Sparfloxacin, and Grepafloxacin have been pulled off stores. Moxifloxacin, a strongly recommended fluoroquinolone, prolongs the QTc interval and increases the risk of torsades de pointes. In the hospital, a patient with severe gastroenteritis and a chest infection developed TdP while receiving [Moxifloxacin].

CASE REPORT

A 60-year-old lady who had loose movements, abdominal discomfort, a fever, and a cough was
brought to the medical unit. She has no noteworthy prior experiences, and her family has never had a sudden cardiac death. Her temperature was 100 degrees Fahrenheit, her pulse rate was 60 beats per minute, her blood pressure was 110/80 mmHg, and a thorough physical examination revealed mild to moderate dehydration. The remainder of the physical examination and systemic exam were uneventful. Serum potassium was 3.5 meq/l, sodium was 142 meq/l, and chloride was 102 meq/l, according to the first laboratory results. She was given omeprazole 40mg intravenously daily, metronidazole 500mg every 8 hours, and [Moxifloxacin] 400mg intravenously. The patient began experiencing dizziness, syncopal episodes, palpitations, and sweating on the third day. The ECG was performed immediately and revealed polymorphic ventricular tachycardia, also known as torsades de pointes. The patient's condition improved when I/V [Moxifloxacin] was quickly terminated, and I/V fluids and magnesium sulphate were administered. A repeat ECG revealed a [QTc] of around 650 ms. The heart rate monitor was fastened. The patient was then started on 1 gm of i/v ceftriaxone twice day, and the remainder of the therapy was continued. The submitted serum electrolytes were within normal limits. The [QTc] interval was decreasing and was 490ms on the fourth day. Omeprazole and metronidazole were discontinued. The [QTc] interval restored to 460 ms after 3 hours, which is a typical number for women. The [QTc] was elevated to 490ms after 3 hours of replacing ceftriaxone with i/v [Moxifloxacin] the next day, and the condition persisted for 48 hours. No torsades took place.

DISCUSSION

[Moxifloxacin] is a widely recommended medication because it is a broad spectrum antibiotic with a long half-life, once daily dosing, and is extremely effective against a variety of pathogens, particularly respiratory infections. One of the major side effects that may cause torsades de pointes, a rare but lethal condition, is [QT interval] lengthening. Despite the fact that [Moxifloxacin] was the primary reason in this case’s TdP, the patient also had additional risk factors, including advanced age, obesity, female gender, and borderline Potassium content. According to Kounas SP in 2005, metronidazole may also subtly lengthen the [QTc] interval by inhibiting cytochrome P450. According to a medical letter on medications and treatments from December 2016, omeprazole may only lengthen the [QTc] interval in cases of hypomagnesemia, hypokalemia, and hypocalcemia; however, in this case, the patient's electrolytes were within normal limits. the [QTc] interval lengthened when metronidazole and omeprazole were withdrawn and just [Moxifloxacin] was resumed. [Moxifloxacin] was the cause of the TdP and [QTc] prolongation. As a result, it is advised that individuals with risk factors avoid using [Moxifloxacin] and have a baseline ECG before taking any medication to check for QT prolongation.

CONCLUSION

[Moxifloxacin] prolongs the [QTc] interval, however when combined with other risk factors and medications that also lengthen the [QTc] interval, the risk of torsades de pointes rises, hence prescribing [Moxifloxacin] for polypharmacy should be avoided.

ACKNOWLEDGEMENT

We appreciate Mr. Yousaf Khan and Mr. Ijaz Khan’s assistance in completing this report.

REFERENCE

7. Redfern WS, Carlsson L, Davis AS. Relationships be-

